Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Conserv Biol ; : e14265, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616727

RESUMO

The fungal infection causing white-nose disease in hibernating bats in North America has resulted in dramatic population declines of affected species, since the introduction of the causative agent Pseudogymnoascus destructans. The fungus is native to the Palearctic, where it also infects several bat species, yet rarely causes severe pathology or the death of the host. Pseudogymnoascus destructans infects bats during hibernation by invading and digesting the skin tissue, resulting in the disruption of torpor patterns and consequent emaciation. Relations among pathogen, host, and environment are complex, and individuals, populations, and species respond to the fungal pathogen in different ways. For example, the Nearctic Myotis lucifugus responds to infection by mounting a robust immune response, leading to immunopathology often contributing to mortality. In contrast, the Palearctic M. myotis shows no significant immunological response to infection. This lack of a strong response, resulting from the long coevolution between the hosts and the pathogen in the pathogen's native range, likely contributes to survival in tolerant species. After more than 15 years since the initial introduction of the fungus to North America, some of the affected populations are showing signs of recovery, suggesting that the fungus, hosts, or both are undergoing processes that may eventually lead to coexistence. The suggested or implemented management methods of the disease in North America have encompassed, for example, the use of probiotics and fungicides, vaccinations, and modifying the environmental conditions of the hibernation sites to limit the growth of the pathogen, intensity of infection, or the hosts' responses to it. Based on current knowledge from Eurasia, policy makers and conservation managers should refrain from disrupting the ongoing evolutionary processes and adopt a holistic approach to managing the epizootic.


Vista paleártica de una enfermedad fúngica de murciélagos Resumen La enfermedad fúngica que produce el síndrome de nariz blanca en murciélagos en hibernación en Norte América ha resultado en declinaciones poblacionales dramáticas en las especies afectadas desde la introducción del agente causante, Pseudogymnoascus destructans. El hongo es nativo del Paleártico, donde también infecta a varias especies de murciélagos; sin embargo, raramente causa patología severa o la muerte del hospedero. Pseudogymnoascus destructans infecta a los murciélagos durante la hibernación invadiendo y digiriendo el tejido de la piel, lo que resulta en la disrupción de los patrones de torpor y la consecuente emaciación. Las relaciones entre el patógeno, el huésped y el ambiente son complejas, y los individuos, las especies y poblaciones responden al patógeno fúngico de distintas maneras. Por ejemplo, Myotis lucifugus, especie del Neártico, responde a la infección montando una respuesta inmune robusta, produciendo una inmunopatología que a menudo contribuye a la mortalidad. En contraste, M. myotis del Paleártico no presenta respuesta inmunológica significativa a la infección. La falta de una fuerte respuesta, resultado de la larga coevolución entre hospederos y el patógeno en el rango nativo de distribución del patógeno, probablemente contribuye a la supervivencia en especies tolerantes. Después de más de 15 años desde la introducción del hongo en Norte América, algunas de las poblaciones afectadas están mostrando señales recuperación, lo que sugiere que el hongo, hospederos, o ambos, están pasando por procesos que eventualmente pueden conducir a la coexistencia. Los métodos de manejo de la enfermedad sugeridos o implementados en Norte América han abarcado, por ejemplo, el uso de probióticos y fungicidas, vacunaciones y modificación de las condiciones ambientales de los sitios de hibernación para limitar el crecimiento del patógeno, la intensidad de la infección o las respuestas de los hospederos. Con base en conocimiento actual de Eurasia, los formuladores de políticas y los manejadores de la conservación deberían abstenerse de alterar los procesos evolutivos en curso y adoptar un enfoque holístico para gestionar la epizootia.

2.
Anim Microbiome ; 5(1): 66, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129884

RESUMO

The skin of animals is enveloped by a symbiotic microscopic ecosystem known as the microbiome. The host and microbiome exhibit a mutualistic relationship, collectively forming a single evolutionary unit sometimes referred to as a holobiont. Although the holobiome theory highlights the importance of the microbiome, little is known about how the skin microbiome contributes to protecting the host. Existing studies focus on humans or captive animals, but research in wild animals is in its infancy. Specifically, the protective role of the skin microbiome in hibernating animals remains almost entirely overlooked. This is surprising, considering the massive population declines in hibernating North American bats caused by the fungal pathogen Pseudogymnoascus destructans, which causes white-nose syndrome. Hibernation offers a unique setting in which to study the function of the microbiome because, during torpor, the host's immune system becomes suppressed, making it susceptible to infection. We conducted a systematic review of peer-reviewed literature on the protective role of the skin microbiome in non-human animals. We selected 230 publications that mentioned pathogen inhibition by microbes residing on the skin of the host animal. We found that the majority of studies were conducted in North America and focused on the bacterial microbiome of amphibians infected by the chytrid fungus. Despite mentioning pathogen inhibition by the skin microbiome, only 30.4% of studies experimentally tested the actual antimicrobial activity of symbionts. Additionally, only 7.8% of all publications studied defensive cutaneous symbionts during hibernation. With this review, we want to highlight the knowledge gap surrounding skin microbiome research in hibernating animals. For instance, research looking to mitigate the effects of white-nose syndrome in bats should focus on the antifungal microbiome of Palearctic bats, as they survive exposure to the Pseudogymnoascus destructans -pathogen during hibernation. We also recommend future studies prioritize lesser-known microbial symbionts, such as fungi, and investigate the effects of a combination of anti-pathogen microbes, as both areas of research show promise as probiotic treatments. By incorporating the protective skin microbiome into disease mitigation strategies, conservation efforts can be made more effective.

4.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179513

RESUMO

White-nose syndrome (WNS) is a fungal disease responsible for decimating many bat populations in North America. Pseudogymnoascus destructans (Pd), the psychrophilic fungus responsible for WNS, prospers in the winter habitat of many hibernating bat species. The immune response that Pd elicits in bats is not yet fully understood; antibodies are produced in response to infection by Pd, but they may not be protective and indeed may be harmful. To understand how bats respond to infection during hibernation, we studied the effect of Pd inoculation on the survival and gene expression of captive hibernating Myotis lucifugus with varying pre-hibernation antifungal antibody titres. We investigated gene expression through the transcription of selected cytokine genes (Il6, Il17a, Il1b, Il4 and Ifng) associated with inflammatory, Th1, Th2 and Th17 immune responses in wing tissue and lymph nodes. We found no difference in survival between bats with low and high anti-Pd titres, although anti-Pd antibody production during hibernation differed significantly between infected and uninfected bats. Transcription of Il6 and Il17a was higher in the lymph nodes of infected bats compared with uninfected bats. Increased transcription of these cytokines in the lymph node suggests that a pro-inflammatory immune response to WNS is not restricted to infected tissues and occurs during hibernation. The resulting Th17 response may be protective in euthermic bats, but because it may disrupt torpor, it could be detrimental during hibernation.


Assuntos
Quirópteros/imunologia , Hibernação/imunologia , Micoses/veterinária , Animais , Ascomicetos , Quirópteros/microbiologia , Citocinas/imunologia , Micoses/imunologia , América do Norte , Células Th17/imunologia
5.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27815278

RESUMO

Chlamydia-like organisms (CLOs) are recently identified members of the Chlamydiales order. CLOs share intracellular lifestyles and biphasic developmental cycles, and they have been detected in environmental samples as well as in various hosts such as amoebae and arthropods. In this study, we screened bat feces for the presence of CLOs by molecular analysis. Using pan-Chlamydiales PCR targeting the 16S rRNA gene, Chlamydiales DNA was detected in 54% of the specimens. PCR amplification, sequencing, and phylogenetic analysis of the 16S rRNA and 23S rRNA genes were used to classify positive specimens and infer their phylogenetic relationships. Most sequences matched best with Rhabdochlamydia species or uncultured Chlamydia sequences identified in ticks. Another set of sequences matched best with sequences of the Chlamydia genus or uncultured Chlamydiales from snakes. To gain evidence of whether CLOs in bat feces are merely diet borne, we analyzed insects trapped from the same location where the bats foraged. Interestingly, the CLO sequences resembling Rhabdochlamydia spp. were detected in insect material as well, but the other set of CLO sequences was not, suggesting that this set might not originate from prey. Thus, bats represent another potential host for Chlamydiales and could harbor novel, previously unidentified members of this order. IMPORTANCE: Several pathogenic viruses are known to colonize bats, and recent analyses indicate that bats are also reservoir hosts for bacterial genera. Chlamydia-like organisms (CLOs) have been detected in several animal species. CLOs have high 16S rRNA sequence similarity to Chlamydiaceae and exhibit similar intracellular lifestyles and biphasic developmental cycles. Our study describes the frequent occurrence of CLO DNA in bat feces, suggesting an expanding host species spectrum for the Chlamydiales As bats can acquire various infectious agents through their diet, prey insects were also studied. We identified CLO sequences in bats that matched best with sequences in prey insects but also CLO sequences not detected in prey insects. This suggests that a portion of CLO DNA present in bat feces is not prey borne. Furthermore, some sequences from bat droppings not originating from their diet might well represent novel, previously unidentified members of the Chlamydiales order.


Assuntos
Quirópteros/microbiologia , Chlamydiales/genética , Chlamydiales/isolamento & purificação , Fezes/microbiologia , Animais , Chlamydiales/classificação , DNA Bacteriano/análise , Filogenia , RNA Ribossômico 16S/análise , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
6.
Oecologia ; 175(3): 811-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24839093

RESUMO

Harmful reactive oxygen species (ROS) produced during metabolism and immune responses are neutralized in part by a powerful enzymatic antioxidant system. Inter-species variability in the baseline activity of antioxidant enzymes may be explained by a variety of life history traits. For instance, ectoparasites can elicit repeated immune responses, thus increasing the production of reactive oxygen species. The bat species studied so far have been acknowledged to have effective antioxidant defences. However, interspecific comparisons within the clade do not exist. The present study compares the antioxidant defence and immune function activities in five northern boreal bat species relative to their ectoparasite prevalence and intensity (wing mites and louse flies) to reveal inter-species differences. Antioxidant enzyme and immune defense activities, which differ between species, are positively associated, with total ectoparasite (mites and bat flies) frequencies, total ROS, and protein carbonylation in Daubenton's bats, but enzyme activities are also independently influenced by sampling date with activities increasing towards the autumn. Antioxidant activities are also positively associated with total reactive oxygen species and oxidative damage (protein carbonylation) in the Daubenton's bat. Our results suggest that antioxidant activities are associated with ecological factors such as parasite load and season, and we consider it likely that these may partly explain the observed interspecific variation.


Assuntos
Quirópteros/imunologia , Quirópteros/parasitologia , Dípteros/fisiologia , Ácaros/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Oxirredução , Estações do Ano , Especificidade da Espécie
7.
Comp Biochem Physiol C Toxicol Pharmacol ; 157(3): 298-305, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23369694

RESUMO

The acute toxicity of organic tin compounds (OTCs) has been studied in detail. However, due to their complex nature, very little is known about species-specific methods of accumulation and consequences for food-webs. Chironomids, on which e.g. Daubenton's bats feed, may act as vectors for the transport of organic tin compounds from aquatic to terrestrial ecosystems. Bats are prone to environmental toxins because of their longevity and their ecological role as top predators. Organic tin compounds are associated with increased formation of reactive oxygen species and associated oxidative damage as well as suppression of immune function. The present paper investigates whether the OTC, tributyltin (TBT) and its metabolite, dibutyltin (DBT), accumulate in natural populations of Daubenton's bats and whether TBT-associated effects are seen in general body condition, redox balance, redox enzyme activities, associated oxidative damage of red blood cells and complement function. We discovered the concentration of bat fur DBT correlated with local marine sediment TBT concentrations. However, we did not find a correlation between the explanatory factors, bat fur DBT and marine sediment TBT concentrations, and several physiological and physical response variables apart from complement activity. Higher DBT concentrations resulted in weaker complement activity and thus a weaker immune response. Although the observed physiological effects in the present study were not strongly correlated to butyltin concentrations in fur or sediment, the result is unique for natural populations so far and raises interesting questions for future ecotoxicological studies.


Assuntos
Quirópteros/fisiologia , Tolerância Imunológica/efeitos dos fármacos , Compostos Orgânicos de Estanho/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Finlândia , Cadeia Alimentar , Sedimentos Geológicos/análise , Espectrometria de Massas , Compostos Orgânicos de Estanho/farmacocinética , Compostos de Trialquitina/farmacocinética , Compostos de Trialquitina/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA